

Year &Sem: IV-B.Tech& I-Sem

SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Database Management System(16CS511)

Course &Branch: B.Tech –ECE, ME, CE

Regulation: R16

<u>UNIT – I</u>

INTRODUCTION TO DATABASE SYSTEM AND DATA BASE DESIGN

1	(a)	Define Database? Discuss about applications of Database Systems?	[L1][CO1] [6M]
	(b)	List out the purpose of Database Systems.	[L1][CO1] [6M]
2	(a)	Explain about Views of data.	[L2][CO1] [6M]
	(b)	Explain about various data models.	[L2][CO1] [6M]
3	(a)	Explain the Architecture of Database with a neat diagram.	[L4][CO1] [6M]
	(b)	Write a short note on Database users and administrators?	[L3][CO1] [6M]
4		Explain about Database languages with examples?	[L4][CO1] [12M]
5	(a)	Classify i)Database ii) DBMS iii) List the database Applications	[L4][CO1] [6M]
	(b)	Outline the Data Abstraction and discuss levels of Abstraction?	[L2][CO1] [6M]
6		Explain about ER model and Component of ER Diagram.	[L4][CO1] [12M]
7	(a)	Write about logical database design (ER to Relational) with suitable examples?	[L3][CO2] [6M]
	(b)	Give an example of Attribute and List various types of attributes.	[L2][CO1] [4M]
	(c)	Define Relationship set.	[L1][CO1] [2M]
8		Explain about integrity constraints over relations?	[L4][CO1] [12M]
9		Construct ER Diagram for University(i.e. Banking system, Hospital management system, Railway Reservation system, Online Shopping)	[L6][CO2] [12M]
10	(a)	Create the DDL Commands – Table Creation, Altering the table structures, truncating a table and dropping a table.	[L6][CO1] [6M]
	(b)	Implementthe DML Commands – Insert, Select Commands, update& delete Commands.	[L6][CO1] [6M]

<u>UNIT – II</u> RELATIONAL ALGEBRA AND CALCULUS, FORM OF BASIC SOL OUERY

1	(a)	Identify relational database query?	[L2][CO2]	[6M]
	(b)	Distinguish GROUP by and HAVING clauses with examples?	[L5][CO2]	[6M]
2	(a)	Illustrate different operations in Relational algebra with an example?	[L2][CO2]	[6M]
	(b)	Explain about triggers and active databases.	[L4][CO2]	[6M]
3		Classify the Relational calculus in detail?	[L2][CO2]	[12M]
4	(a)	Define NULL VALUE? Describe the effect of null values in database?	[L1][CO2]	[6M]
	(b)	Distinguish different types of aggregate operators with examples in SQL?	[L4][CO2]	[6M]
5	(a)	Evaluate project, join, select and product set operators with examples.	[L5][CO2]	[6M]
	(b)	Describe the SET operators with example.	[L1][CO2]	[6M]
6	(a)	Develop the working of union, intersection and except operations	[L6][CO2]	[6M]
	(b)	Give an examples of clauses SELECT with an example.	[L2][CO2]	[6M]
7	(a)	Distinguish between two set theoretic operations of relational algebra with an example.	[L2][CO2]	[6M]
	(b)	Create a sub query to establish the WHERE, ANY, AS and ALL sub queries with example.	[L6][CO2]	[6M]
8	(a)	Write in detail about expressive power of algebra and calculus.	[L3][CO2]	[6M]
	(b)	Explain the structure of basic form of an SQL query with an example.	[L4][CO2]	[6M]
9		Categorize the types of joins?	[L4][CO2]	[12M]
10	(a)	Express a nested query?	[L2][CO2]	[2M]
	(1.)	Create a nested query to find the names of sailors who have reserved both a red and	II (110001	
	(D)	(b)	Green boat?	[L6][CO2]
	(c)	Construct a nested query to find the names of sailors who have reserved all boats?	[L6][CO2]	[5M]

Course Code: 16CS511

<u>UNIT – III</u>

<u>INTRODUCTION TO SCHEMA REFINEMENT, PROPERTIES OF DECOMPOSITIONS:</u>

1.	a) b)	Illustrate redundancy and the problems that it can cause. Explain about Functional Dependency.	[L2][CO3] [6M] [L4][CO3] [6M]
2.		Explain in detail about 1NF, 2NF, 3NF and BCNF with example.	[L6][CO3] [12M]
3.		Discuss about 4NF/MVD with example.	[L2][CO3] [12M]
4.		Discuss about 5NF/PJNF with example.	[L2][CO3] [12M]
5.	a) b)	Discuss about Armstrong Axiom's in functional Dependency. Define Decomposition. List out the properties of decomposition.	[L4][CO3] [6M] [L4][CO3] [6M]
6.	a) b)	Illustrate the types of anomalies with example. Let $R(A, B, C)$ and $F = (A \rightarrow B)$. Prove that the decomposition of R into $R1(A, B)$ and $R2(A, C)$ is lossless - join decomposition.	[L4][CO3] [6M] [L3][CO3] [6M]
7.	a)	Consider the schema: R (A, B, C, G, H, I) and the set of FD's (A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H). Prove the members of F ⁺ : A \rightarrow H, CG \rightarrow HI, AG \rightarrow I with axioms is true.	[L3][CO3][6M]
	b)	Consider the relation scheme $R = \{E, F, G, H, I, J, K, L, M, M\}$ and the set of functional dependencies $\{\{E, F\} -> \{G\}, \{F\} -> \{I, J\}, \{E, H\} -> \{K, L\}, K -> \{M\}, L -> \{N\} \text{ on } R.$ What is the key for R ?	[L5][CO3] [6M]
8.	a)	What is Normalization? List out the purpose normalization.	[L1][CO3] [6M]
	b)	Outline the terminologies: Partial Dependency, Transitive Dependency, Determinant, MVD, Join Dependency	[L2][CO3] [6M]
9.	a) b)	Compare 3NF and BCNF with example. The relation schema Student_Performance (name, courseNo, rollNo, grade) has the following FDs: name,courseNo->grade	[L4][CO3] [6M]
		rollNo,courseNo->grade name->rollNo rollNo->name	[L3][CO3] [6M]
		What is the highest normal form of this relation scheme?	
10.	a)	Compare Trivial and Non – Trivial Functional Dependencies with example.	[L4][CO3] [6M]
	b)	Explain the following with suitable example. (i) Full functional dependency. (ii) Partial dependency.	[L4][CO3] [6M]

Course Code: 16CS511

$\underline{UNIT - IV}$

TRANSACTION AND CONCURRENCY

1	(a)	Define a Transaction? List the properties of transaction	[L1][CO4]	[6M]
	(b)	Write briefly about serializability with example.	[L3][CO4]	[6M]
2	(a)	Discuss How do you implement Atomicity and Durability	[L6][CO4]	[6M]
	(b)	What is a Transaction? Explain the properties of the transaction. Explain the States of the transaction with a neat sketch.	[L4][CO4]	[6M]
3	(a)	Discuss different phases (states) of transaction?	[L2][CO4]	[6M]
	(b)	Define Schedule? What is a serial schedule?	[L1][CO4]	[6M]
4	(a)	Demonstrate Conflict Serializability?	[L2][CO4]	[6M]
	(b)	Illustrate Concurrent execution of transaction with examples	[L3][CO4]	[6M]
5	(a)	What are the states of transaction?	[L1][CO4]	[6M]
	(b)	What are the two statements regarding transaction?	[L1][CO4]	[6M]
6		Discuss various concurrency control protocols.	[L2][CO4]	[12M]
7		Analyze the Validation based protocols.	[L4][CO4]	[12M]
8		Explain buffer management in concurrency control system.	[L4][CO4]	[12M]
9		Explain Timestamp-Based Concurrency control protocol and the modifications implemented in it.	[L4][CO4]	[12M]
10		Identify the deadlock and 2-phase locking to ensure serializability in concurrency control with locking methods.	[L3][CO4]	[12M]

Course Code: 16CS511

$\underline{UNIT - V}$

RECOVERABILITY, PHYSICAL STORAGE AND DATABASE CONCEPTS

1	(a)	Discuss about file organizations and indexing?	[L6][CO5]	[6M]
	(b)	Explain about Index structures?	[L2][CO5]	[6M]
2	(a)	Categorize the file organizations in detail?	[L4][CO5]	[6M]
3	(a)	What is clustered index organization? Illustrate with example?	[L1][CO5]	[6M]
	(b)	Explain about Composite Search Keys? Illustrate with example?	[L4][CO5]	[6M]
4	(a)	Illustrate Tree indexes?	[L2][CO5]	[6M]
	(b)	Explain about ISAM?	[L4][CO5]	[6M]
5		Describe about B+ Trees Dynamic Indexing?	[L1][CO5]	[12M]
6		Explain about Search and Insert in Tree Structured Indexing?	[L2][CO5]	[12M]
7		Explain how to Delete and Duplicated in Tree Structured Indexing?	[L3][CO5]	[12M]
8	(a)	Discuss about static hashing	[L6][CO5]	[6M]
	(b)	Explain about Extendible hasing?	[L2][CO5]	[6M]
9	(a)	Explain about linear hashing	[L2][CO5]	[6M]
	(b)	Compare Extendible vs Linear hashing?	[L5][CO5]	[6M]
10	(a)	What is clustered index organization? Illustrate with example.	[L1][CO5]	[6M]
	(b)	Design example for Composite Keys?	[L6][CO5]	[3M]
	(c)	Define rotational latency time.	[L1][CO5]	[3M]

PREPARED BY Mr. B. ASHOK

Assistant Professor/CSE